3.396 \(\int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}} \, dx\)

Optimal. Leaf size=36 \[ -\frac {2 i \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}} \]

[Out]

-2*I*(a+I*a*tan(d*x+c))^(1/2)/d/(e*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {3488} \[ -\frac {2 i \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[e*Sec[c + d*x]],x]

[Out]

((-2*I)*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[e*Sec[c + d*x]])

Rule 3488

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(a*f*m), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] &
& EqQ[Simplify[m + n], 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}} \, dx &=-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 36, normalized size = 1.00 \[ -\frac {2 i \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[e*Sec[c + d*x]],x]

[Out]

((-2*I)*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[e*Sec[c + d*x]])

________________________________________________________________________________________

fricas [B]  time = 1.62, size = 64, normalized size = 1.78 \[ \frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-i \, e^{\left (2 i \, d x + 2 i \, c\right )} - i\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{d e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(-I*e^(2*I*d*x + 2*I*c) - I)*e^(1/2*I*d*
x + 1/2*I*c)/(d*e)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {e \sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)/sqrt(e*sec(d*x + c)), x)

________________________________________________________________________________________

maple [A]  time = 1.25, size = 56, normalized size = 1.56 \[ -\frac {2 i \cos \left (d x +c \right ) \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \sqrt {\frac {e}{\cos \left (d x +c \right )}}}{d e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2),x)

[Out]

-2*I/d*cos(d*x+c)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(e/cos(d*x+c))^(1/2)/e

________________________________________________________________________________________

maxima [B]  time = 0.49, size = 76, normalized size = 2.11 \[ -\frac {2 i \, \sqrt {a} \sqrt {-\frac {2 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1}}{d \sqrt {e} \sqrt {-\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-2*I*sqrt(a)*sqrt(-2*I*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1)/(d*sqrt(e)*s
qrt(-sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(c + d*x)*1i)^(1/2)/(e/cos(c + d*x))^(1/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)^(1/2)/(e/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}{\sqrt {e \sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)/(e*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))/sqrt(e*sec(c + d*x)), x)

________________________________________________________________________________________